Estimation of Probability Density Functions for the Higgs search

نویسنده

  • W. Murray
چکیده

This note presents some investigations of smoothing routines for the estimation of PDF, specifically the HBOOK SMOOTH, MLP-fit and a Gaussian Kernel estimator. It presents some tests on the over-training, or more generally the accuracy of the PDF. No technique is perfect, but the kernel estimator gives the best results in a series of tests, and it is recommended that it be tried for the Higgs search. Over-training is kept at a low level and the results remain reasonable at all times. It should therefore not be necessary to provide separate test and training data sets on a routine basis. Some appendices investigate how the performance depends upon the kernel width, the number of bins and the simulated statistics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین احتمال بزرگی زمین‌لغزش‌های رخ‌داده در حوزه آبخیز پیوه‌ژن (استان خراسان رضوی)

Knowing the number, area, and frequency of landslides occurred in each area has a prominent role in the long-term evolution of area dominated by landslides and can be used for analyzing of susceptibility, hazard, and risk. In this regard, the current research is trying to consider identified landslides size probability in the Pivejan Watershed, Razavi Khorasan Province. In the first step, lands...

متن کامل

AN OPTIMUM APPROACH TOWARDS SEISMIC FRAGILITY FUNCTION OF STRUCTURES THROUGH METAHEURISTIC HARMONY SEARCH ALGORITHM

Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach...

متن کامل

Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters

The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables

Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses

We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000